Corey Burton cburton@sewanee.edu Coker George gcoker@sewanee.edu Chauncey Gibson cgibson@sewanee.edu Rouhiya Hakim rhakim@sewanee.edu Bryant Hicks bhicks@sewanee.edu Todd Jean-Pierre tjpierre@sewanee.edu Rosie Jimenez rjimenez@sewanee.edu Sung Kim skim@sewanee.edu Tina Nguyen tnguyen@sewanee.edu Chinedu Nnorom cnnorom@sewanee.edu Jorge Ramallo jramallo@sewanee.edu Nicole Restrepo nrestrepo@sewanee.edu Jordan Sanders jsanders@sewanee.edu Alpana Senapati asenapati@sewanee.edu Jason Seymour jaseymour@sewanee.edu John Seymour joseymour@sewanee.edu Tina Tieu ttieu@sewanee.edu Talia Walker twalker@sewanee.edu Whitney Whiteside wwhiteside@sewanee.edu Will Zhou wzhou@sewanee.edu

WEEK 1 TEAMS
TEAM 1 TEAM 2  TEAM 3  TEAM 4   TEAM 5
Tina T. Jordan  John  Sung   Rosie
Corey  Whitney  Rouyiha Nicole   Tina N.
Talia  Chinedu  Alpana  Coker Jorge
Chauncey  Todd Will  Jason  Bryant

Homework for Tuesday night (6/24) due Wednesday morning (one per team):

1) Find the general equation that predicts how many moves are required for n disks in the Tower of Hanoi game.

2) Use it to calculate the time it would take to complete a game with n = 25 disks, at a rate of 1 move per second. Is it longer or shorter than the average human lifetime (lets say 75 years)?

3) Use it to calculate the time it would take to complete a game with n = 64 disks, at a rate of 1 move per second. Is it longer or shorter than the accepted age of the universe (about 15 billion years)?

4) The 3 points, 1/2 distance chaos game rules produce the Sierpinski Gasket we saw in class. What is your prediction (emerging pattern) for a 4 points, 1/2 distance game (imagine using the corners of a square instead of a triangle)?

5) Read Chapter 3 (pages 81-118) of Gleick's Chaos and answer (type them in MS Word) the questions posted at:

http://www.sewanee.edu/physics/bridge/GLEICK.html